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Suppressing the solvent peak isimportant in many applications of The aim of the article is to alleviate these shortcomings by:
biomedical NMR spectroscopy in order to quantify the metabolites ) )
with a great accuracy. Among the postprocessing methods proposed e making the connection between some of the methods fror
in the literature, many deal with the concept of filtering. However, ~a theoretical point of view;
several proposals lack a theoretical perspective and some have not e comparing the accuracy of the final parameter estimate
been explicitly applied to quantification problems. The presentarti-  obtained by quantifying the signals processed by the differer
cle is intended to bridge this gap: five methods are analyzed froma methods.
theoretical perspective. Subsequently the different methods are ap-
plied to the same set of data, and then the latter are quantified using The methods we have chosen are:

the model fitting method AMARES. With our set, the scheme pro- L.
posed by T. Sundin et al. (J. Magn. Reson. 139(2), 189-204 (1999)) e a Gabor transform based methd), (which is a valuable

proved to be the most reliable method.  © 2001 Academic Press alternative to the WaVe'?t transform based mett8¢b)
Key Words: peak suppression; quantitation; filter; time-frequency e the method of Mariort al. (6);
analysis. o the method of Sodano and Delepierv;(

e the Cross methodBj;
¢ the Finite Impulse Response (FIR) filter based method de
1. INTRODUCTION veloped by Sundiet al. (9).

In biomedical applications of proton NMR spectroscopy, the These have been chosen because they are based on filter
large solvent water resonance must be suppressed in orde®fig they provide variations on the “filtering scheme.”
allow an adequate quantitation of the solute. However, as one
usually intends to quantify metabolites, suppressing the solvent 2. FILTERING AN NMR FID

peak should not alter them. ) ) )
Many methods have been proposed in the literature and the_)}n this Section, we study the different solvent peak suppres

can be classified in two groups: on the one hand, the pulse sion methods from a theoretical point of view. In Section 2.1 we

quence methods and hardware methods, on the other hand &fiain the common feature of all compared methods, i.e., th

postprocessing method#)( The two groups should be used irfEXtraction of the solvent signal using a filter. We then discus:
conjunction for better results. the inherent difficulties associated with the use of a filter. In
Most of the proposed postprocessing methods rely imp|i§_ections 2.2102.6 we_descripe the differ_ent implementation a:
itly or explicitly on the signal processing concept of filterP€Cts of @ach method in detail and examine the consequences
ing. However, several proposals lack a theoretical perspectﬂ?@ solventremoval step on the quantification procedure. Finally
R Section 2.7 the main characteristics of the filtering method:

and some have not been explicitly applied to quantificatid :
problems. are summarized.

2.1. The Filtering Method and Its Limitations
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FILTERING APPROACH TO SOLVENT PEAK SUPPRESSION 27

e A(t), the amplitude of the signal, is of finite energy, real, e | isthe point wheref is maximum or the average location.
positive, and regular ofR. The exact definition of regular is In the latter case,
provided in Appendix B. For an FIDA(t) has a maximum
aroundt = 0 and decreases wherincreases. The exact form [otlf(t)2dt
of the peaks is usually unknown. However, the amplitude of the =

. : . Y : IAHOE T
metabolite peaks will sometimes explicitly be modeled with a
damped exponential. )
o U(t) is the Heaviside step function: e Cy(t, w) is an error term that can be bounded.
_ Then, under the assumption th(tr) varies slowly on T, +
0 ift<0, t, —T; +t], which means thad®)(r), the first derivative of(z),
u) = ) . L " o
1 ift>0 is very smallonthisintervat 7 s(t, wo) and the filtering method

lead to good approximations 8up to a correction term. So with
| f(0)] ~ 1, one can extrack from these transformations, even

As soon asA(0) # 0, S(t) is discontinuous at=0. So the if the exact shape oA(t) is unknown:

Fourier transfornm(w) of S(t) decays slowly at high frequency,
leading to a large peak tail (see Appendix A for some useful B
properties of the Fourier transforgof the signalS). St —1) ~ G _fvS(tA’ “’0). 5]

In the sequel, we explain how the water peak can be sup- gl f(0)
pressed using a generalized filtering framework.

Once and for all, we assume thiRtandT, are two real con-  In general, one extracts or suppresses one compdaent
stants with—co < T; < T, < +oo and that the support of the among the sunS of many others. Let us now writg(t) as
function f is [Ty, Ty], i.e., f(t) = 0if t ¢ [Ty, T2]. The energy
of f is supposed to be finite. m m _

_By*andf, we denote the complex conjugate and the function St) =D S(t) = Aty @MU ),
f(r) = f*(—1) respectively. We also define the family of func- k=0 k=0
tions f, ,(r) = f(r — )Y with (t, ) € R2. Each element
of this family is a frequency and time translated version of thend by linearity ofG 7 g,
reference functiorf.
The following function,

Gralt.w) = Y St =N flox—w) +e(t.w).  [6]
Grs(t, ®) = (e S k=0

_ /(F(r — )0y S(r) dr [1] With w = wg the componen§(t) can be well extracted or sup-
R pressed if the bandstop or bandpasg @ sharp enough.
However, because of the discontinuity of the FID &t0, this

can be interpreted as a weighted sum B (, andS. It defines approximation is valid only for < T, ort > T, that s, outside

the Gabor transform @with awindow f and is a generalization Of the transients.
of the filtering notion because From another point of view, and according to the continuity

property of a filtered signal (see Appendix 8¢ s(t, w) is con-
Gt O f ¢ 5 tinuous at each poirton R, although we intend tp extract/_sup-
f.s(t. 0) * S(0). [2] press fromS one and only one compone§ that is discontin-
uous at = 0. This is the main difficulty.

According to Appendix B, an approximate expression of So the questionis: Is it possible to reco@and in particular
Gr s(t, w) under the assumption tha(z) varies slowly on points around its discontinuity with a filter based technique
[-To+t, =Ty +t]is From an accurate quantitative perspective, properly getting tho:

first points is essential because the power of the metabolite
Grs(t, w) = @t (At — 1) o(wo — w) + Ca(t, )) COMPONENts is maximum there.
Before studying the solution proposed by the different au:
[3] thors, let us point out an exact result concerning the metabolif
= St — e f(wp — w) + @D+, (t ). represented by modulated damped exponentildeefining
[4]

m m

SO =) Sdt) =) _ A *e U,

In the previous equations, k=1 k=1
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its transformG r g is
m
Gist, o) = Z Age At (o)
k=1

Tz )
x / f (u)eku—i =iy (t — u)du.
T;

1

with ¢o € R, then the covariance under frequency translatior
property of the Gabor transform implies that

Gfsl(t, CL)) = Gﬁs(t, w — CO)

This property is most welcome in the context of NMR
spectroscopy, since frequency translation is very commor
Unfortunately, the previous relation does not hold with the

If t > T, the shape of the metabolite signals remains unchang&avelet transform, except for the trivial cage= 0. Here we

after filtering,
m
Gislt.w) = StFik) [7]
k=1
up to some weighting factors:
Fiklw) = / f (u)etu—ilalugy, [8]
R

Compare Eq. [6] with [7]; itk = 0, Fi (@) = f(wk — ).

focus on the Gabor transform only.

_ With this method, one chooses a lowpass analyzing windov
f with finite support. Usually, it is a truncated Gaussian or a
Hamming window, so it is real and centered around the origir
(I = 0). The exact window type and width are chosen by the use
and not automatically. Then a convergence algorithm will find
the estimated positiomy of the solvent peak in the spectrum,
extract it, and remove it from the signal. The last filtering steps
of the algorithm are summarized in Fig. 1.

Now, we will examine the five solutions mentioned in the S

introduction. We will explain their specific implementation de-

tails and their effect on the actual estimation of the parameters
of the metabolites of interest. The methods mainly differ in the
exact choice of filter and in the treatment of the datapoints for
t < Tz.

We consider that the analyzed sigisé) is the sum of a sol-
vent peaksy(t) andm metabolite peak&(t) (k € {1, ..., m}),
modeled by damped exponentials

St) =) s() [9]
k=0

m
— (Ao(t)e‘ (wot+¢o) 4 Z Akedktei(wkt+¢k)>u (t) [10]

k=1

with Ag a regular real and positive function of finite energy,
A € RT, (di, o, ¢x) € RY x R?fork e {1,..., m}.

2.2. Gabor Solution

As mentioned earlier, Eq. [1] is the definition of the Gabor
transform ofS. This transformation has many interesting prop-
erties (LO) and is closely related to the wavelet transform. The
wavelet transform was applied more than ten years ago to the
solvent suppression problem, (5 and later to the dynamical
phase correction problerB)

However from a spectroscopist perspective, the Gabor trans-
form is more natural than the wavelet transform for solving
the problems mentioned above. In fact, spectroscopists prefer
a transform that is covariant under frequency translation (the
Gabor transform) to a transform that is covariant under dilation
(the wavelet transform®j. In other words, ifS; is a frequency
shifted version ofS,

Si(t) = €' S(t)

\
—

Modulated ALP filter

FIG. 1.

Schematic representation of the Gabor Method.
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Using Egs. [6], [7], and [10] the signal with the solvent peakn the original publication, the signal is supposed to be discret
suppressed can be approximated by and because of the circular convolution, one extrapolates als
the lastT, points. In the sequel of this section, we omit the latter

Selt) ~ (so(t)(l — f(wo— o) + Y SO~ Ff,k«oo)))
k=1
x U(t — To). [11]

As no special treatment is provided i8) for points beforeT,,
we set them to zero, by multiplying the signal byt — T,).
Shifting the origin by posing =t — T,, we get

m

S(r) ~ <50(T + T2 — f(wo — @) + Z Ace 4T

k=1

x (1— Fri(ao))e e <wkr+¢k+wnz>)u (r). [12]

If fA(a)o — ap) = 1the solventandits tail are suppressed. The sig-
nal is a sum of modulated damped exponentials whose parame-
ters can be estimated using any of the standard estimation meth-
ods (e.g., black-box methods such as LPS\M) @nd HSVD

(12), interactive methods such as VARPRTB(and AMARES

(14).

In the sequelA, di, vy, ¢, denote the estimated parameters
of S. In order to get a good estimation of the parameters of the
original metabolite peaks, and avoid bias, these raw parameters
have to be corrected. We propose new estimates that will be
denoted byA,, dy, ok, ¢

. ek T2

A= A= Froo)) 03]
di = d] [14]
x = ol [15]
bk = ¢y — 0 T2 — arg(1— Fry(@o)). [16]

Note that only the amplitude and the phase have to be corrected.

2.3. The Extrapolation Method of Marion et al.

With this method §), the frequency of the solvent peak
is supposed to be 0. With complex signals, the solvent peak
may be shifted to zero by modulation. The signal is filtered
with a finite length lowpass filter like a sine-bell or truncated
Gaussian function of lengthT2 centered on the origin. Its ex-
act shape is chosen by the user. So we@gg(t, 0). Points of
Gt s(t, 0) whose abscissa is smaller th&nare not removed,
but are replaced by linear extrapolation of the pofaitss(T., 0)
andGs (T, + M, 0), (M € RT):

t—Ts

Su(t) = Grg(T2, 0) +
x(Grs(T2+M,0) - Grg(T2,0). [17]

interpolation. A schematic diagram of the method is presente
in Fig. 2. The solvent peak extracted by Marienhal. is con-
tinuous but in general not differentiabletat= T,. Finally, this

(1)

i

LP filter
ft)

r

*V

U(t-T,)

J:

Linear Extrapolation

i

x(-1)

Sm(0)

_—

FIG. 2. Schematic representation of the Marion method.
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signal is subtracted from the original signal to obtain the solvent
suppressed sign&ly (t).

If t > T,, an approximation of the solvent suppressed signal
is almost the same as Eq. [11],

Su(t) ~ SO - fO)+ ) S - Fru(0). [18]
k=1

and ift € [0, Ty),
Su(t) ~ S(t) — f(0)

X (3)(1-2) + T2

JV%M—&@+M@

m
Y Sk(t)<1 _ e MDD E, (0)

k=1

x <1+ TZM_t(l_e—dkMeiwkM)». [19]

So the solvent line will be well suppressed if the linear approx-
imation is valid. The first time points of the metabolites are
conserved but might be distortedr;(0) # 0. This distortion
is time and frequency dependent.

Now if Sy is quantified, itis very difficult to take into account
the modified first points. If the estimated parameter§pfare
A di, wy, andgy, we propose to estimate, as before, the real
parameters with the corrections

A= ﬁ [20]
d = dp [21]
wk = Wy [22]
Pk = i — arg(1— F(0)). [23]

2.4. Sodano and Delepierre Solution

The method proposed by Sodano and Delepiatyés(based
on the assumption that the solvent p&lks slowly varying for
t > 0 and differentiable ofR* with |dd—?(t)| small. As a conse-
guence, the solvent pedk(t) centered aroundy = 0 is well
approximated bYs st + T2, 0) (t > 0). f(t) is a finite length
lowpass filter chosen by the user, whose supporti§;[ T,]
symmetrical. Then this approximation is subtracted from the
original signal (see Fig. 3). According to Egs. [4], [7], and [10],

the signal with the solvent peak suppressed is The discontinuity at = 0 is preserved and the tail of the peak
~ is removed. According to Eq. [24] suitable corrections shoulc
Ssdlt) ~ (So(t) — S(t + T2) £(0) be applied on the estimated peak paramet¢rsl; , oy, andg;
of Sso(t). We propose again

+) 0 S(t)(1— e HTgxT Ff—,k(O))> u(t). [24]

k=1

(1)

i

LP filter
fi

r

y

U(t-Ty)

J:

s(t):=s(1+15)

\
—

x(-1)

)

| SSO(I)

FIG. 3. Schematic representation of the Sodano and Delepierre method.
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dx = dy [26]
wk = Wy [27]
Pk = ¢ — arg(l— e k42 F - (0)). [28]

31

of the filter (a) at—t. Fort > 0 the output of the filter (b) is

the output of the last forward filtering step. So we conclude tha
the input of the filter (b) is not continuous. One can expect tha
this scheme will not totally suppress the solvent peak and mig!

distort the metabolite signals.

2.5. Cross’s Solution

We suppose the solvent peak to be at zero Hertz. If itis not, one
modulates the complex signal to shift the solvent peak to zero. In
that case, after suppressing the water peak, an extra modulatio
step will move the spectrum and the metabolite peaks back to
their original position.

The signal, with solvent peak at zero frequency, is filtered
twice, once backward and then forward with a real causal
(Ty > 0) highpass IIR butterworth filtedf, 16, to avoid phase
distortion and transientsS);

S(t)

The transient response and the phase shift are eliminated
by treating the FID as though it had mirror symmetry about

Symmetry

the first and the final data points. [The signal is here sup-
posed to be discrete.] The filter is run forward over the FID,
with a weighting function that increases from zero to one,
the output from this stage of the filtering being ignored.
With the filter now initialized, the data are filtered from the
last point to the first point and the filtered data saved. The

HP filter
fio)

|

Uy

t

(@)

frequency-dependent phase shift is then eliminated by run-

ning the filter forward from the first to the last data point

of the filtered data to give the final output.

When the FID dies away to zero, the first initialization step
can be avoided, as we will do in the sequel of this section. In
that case, the solvent suppressed signal is

St) = (f * (K + AU Q) [29]
= (o &+ SHUW), [30]
where
() = (f * SEU(L) = (fro. HU()
[31]
| s-n ift<o,
M) = 0 otherwise.

One can show that, tf > 0,
) = % K(-1).

As f is real, the symmetry stated by Cross is respected by this
mathematical formulation.

Figure 4 is an unfolded illustration of this scheme. The filter
denoted by (b) in the figure implements both the backward fil-
tering and the last forward filtering step: fok 0, the output of

this filter is the output of the backward filtering step. It is equal FiG. 4. schematic representation of the Cross method. The first initializa

]
T

Q)

S
N

HP filter
fi) L

(b

to the input of the filter at point-t, which is also the output tion step is not represented.
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If we notice thatf — f, an approximate formulation &, S(1)
with Sas [10] onR is

S0~ (s)(t O+ a(t)Ff,k(0>)U(t).
k=1

V

So a very rough approximation &(t) for large positive is

m Modulated {HP filte:
S~ SOIFOF + Y. SOFxOF () Q‘—
k=1

~ SOIFO)F + > St /R I (r)e % e dr
k=1

o U(r-Ty)
~ SO0+ S()Fr, «0) [32] L
k=1
with "' the autocorrelation of . However, asf is an lIR filter, Ssul?)
F 7x(0) might be very large or infinite. If the dampiwg is near —
0, andrl'¢ () decreases quickly, another approximation could be —
written
~ m ~
S(t) ~ Sl f(0)|2 + Z SO f(“’k)|2~ [33] FIG.5. Schematic representation of the Sundin method.
k=1

We have checked that these two filtering steps might avoid ph#yed 0 < | < T, because the impulse response of the filter
distortion. But, for smalt, the solvent peak may not be supis causal, not centered around 0. If we change the origil
pressed, and the metabolite peaks might be distorted. Hencewe t — T2, we obtain
will not propose any parameter correction.

One should also remark that filtering a signal twice with are N iwol £ .
filter, once forward and once backward, is equivalent to filterinagéS“(T) ~ (SO(T +To =)™ flwo — wo)
a signal with a single filter whose impulse response is real and m
symmetric about 0. This makes the c_onnection v_vith some of the + Z A TegxT Ffik(wo)e—dkrei (@+¢d) |y (7).
previous methods where a symmetric real FIR filter was used. =1

2.6. The Maximum Phase Method of Sundin et al. [35]

The signal is filtered with a causaly( > 0) finite length Compare [11] (respectively, [12]) with [34] (respectively, [35]).
(T2 < o0) high pass filter (see Fig. 5). An automatic filter desigi f(w», — @9) = 0 the solvent and its tail are suppressed.
scheme ) takes care of the appropriate choice of the filterhe signal is again a sum of modulated damped exponentia
parameters and estimates the positigrof the largest peak in whose parameters can be estimated using any of the standz
the spectrum. The only parameter the user must specify is #iimation methods. An estimate of the original parameters ca

approximate frequency of the peak of interest that lies closes optained froma, d;, o}, andgy, using the formulas
to the water peak. After filtering we g& s(t, wo). Points of

G .s(t, wo) whose abscissa are smaller tharare removed. By ) T
the use of a maximum-phase filter, the information content lost A= A‘,‘F*—' [36]
by discarding those points is minimal. The signal with the solvent |F(eo)]
peak suppressed can be written as (see Egs. [6], [7], and [10]) dy = dy [37]
Ssut) = foo * S(t) = G gt o) Ok = i [38]
Pk = ¢ — oy T2 — arg(F k(o). [39]

m
~ (so(t e Flwp— o)+ Y &(t)Fak(wo))
k=1 However, estimation cannot be performed with standarc
x Ut —Ty). [34] methods if prior knowledge concerning the amplitudes or
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TABLE 1 metabolite signal, one has to fit the metabolite signal after filter
Summary of the Methods ing with §, and map those extracted parameters to the origin:
Property Gabor Marion  Sodano  Cross Sundin Parameters o& In summary, if the_approprlat_e model functlon_
of the metabolites is known, a similar derivation as was done i
Filter Lowpass  Lowpass Lowpass Highpass HighpassEgs. [13]-[16] can be made to investigate the effect of the filte
Salvent peak on the model function of the metabolites.
position Anywhere 0 Hz 0 Hz O Hz Anywhere
Automatic filter
design No No No No Yes 3. THE TEST EXAMPLE
Metabolite
distortion No Yes No Yes No Our test example simulates'l MRS signal. Experimental

H signals are normally acquired with some water suppressio
technique, however some water signal usually remains. Eac
phases is to be taken into account. The influence of the filter gimulated signal of our dataset is the sum of three component
these parameters must be considered directly in the estimagigsidual water, five metabolites, and noise. The amplitude ratic
procedure to yield correct estimates. B) {t is proposed to petween residual water and metabolite peaks are usually b
minimize the squared difference between the filtered signal afi¢een 10 and 100, and the linewidths of the metabolite peak
the filtered model function derived in Eq. [35]. The quantitatiogre typically between 5 and 12 Hz.
method taking into account the influence of the filter in the The simulated signal was derived from an experimental sign:
minimization procedure is denoted by AMARES obtained from a water solution of 100 mM creatine (Cr) ¢CH
singlet, peak 1; Chlsinglet, peak 2), 100 mM acetate (gH
singlet, peak 3), 50 mM t-butyl alcohol (8 CHs singlet, peak
We summarize in Table 1 the main characteristics of tH8, and 10 mM trimethylsilylpropionic acid (TSP,x3CHjs sin-
different methods. In the row “Metabolite distortion” a “Yes”glet, peak 5). A single-voxel signal from a spherical phantomwa
means that the filtered metabolite signals are no longer damgediuired at 1.5 T (Vision, Siemens) using the STEAM sequenc
exponentials. With the Marion method, this distortion is limitedTR/TE/TM = 20000/20/30 ms) with selective water suppres-
to the first points. The row “Solvent peak position” describes ttson. The acquired phantom signal was quantified with HSVL
position of the solvent peak when applying Eqg. [1]. If the signaising a high model orde™ = 100). The residual water sig-
is complex and the water peak is not at 0 Hz, Marion, Sodargl was subsequently reconstructed with all the exponentiall
and Cross methods can be applied after shifting the water pemped sinusoids with frequencies betweeB( and 30] Hz
to zero by modulation. The other methods prefer modulating thed with amplitudes above the estimated noise levet 7.5.
filter. The parameters of the seven peaks used to reconstruct the we
Allthe methods assume that the solvent peak is regular enowghonance are found in Table 2.
to be suppressed by filtering. However, because of the discontiThe five metabolite peaks were modeled as exponentiall
nuity at 0, one cannot recover easily the first points. Magicad. damped sinusoids with frequency, phase, and damping clo:
extrapolate those points, Cross tries to enhance the regularitymfvhat was measured in the phantom experiment. The amp
the signal, Sodano and Delepierre subtract a translated vergiattes of the peaks were chosen to be approximately equal to t
of the extracted peak, and Sundinal. discard the first points estimated TSP amplitude and set equal for all peaks except f
but use a maximum-phase filter to minimize the information loghte two Cr peaks whose 2 : 3 ratio was kept. The signals (FIDs
in these samples. are 512 points long with a sampling frequency of 1000 Hz. The
From a guantitative perspective, properly recovering thos®act parameters used in the simulation examples are given
first points is important because the power of the signal T@ble 3. The amplitude ratio between the residual water pes
maximum here. However, if it is not possible, dropping them
could be a better solution.

2.7. Summary

One should remark that the preceding methods are based on TABLE 2
filtering and some other treatments like the multiplication of aEstimated Water Signal Parameters Used in the Reconstruction
filtered signal byJ (t). The solvent suppressed sigeahnotbe of the Water Peak
written as a single convolution of the FID with a functidn  f,, (Hz) dy, (H2) buy ©) Ay, (a.u)
because of the latter operation. As a consequence the Fouri_er 510 9088 1501
transform of the solvent suppressed sigrainotbe writtenas o 828 _4519 64.74
a single product of the Fourier transform of the FID aind _216 1051 _205 321.25
If the metabolite component is not a Lorentzian and varieso0.18 12.45 179.97 1142.30
quickly, then the model function of the metabolite is altered by-0.17 4.24 —-17039 251.92
filtering fort < T, andfor t > T,. The shape of the metabolite 3-09 i-gg g‘iﬁ 2(1);'31,8

signalS; after filtering is changed t§,. To quantify the original
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TABLE 3 0
Metabolite Parameters Used in the Simulated Signals b NG -tod!
Peakk fi (H2) dk (Hz) o ) A (a.u.) 7 S ASpts |
1 61 7 0 20 15k
2 118 7 0 30 -
3 189 7 0 20 £-20
4 231 7 0 20 =
5 311 7 0 20 5
Z 30
N

|
%)
[

T

I

|
S
(e}

T

i

(frequency around 0) and the closest metabolite peak (peak
frequency 61 Hz) is 43.

The added complex noise was white and circular Gaussi:
distributed. The noise standard deviation was varied to simula
seven SNR. The standard deviation of the real or imaginaiy
part of the CirCUIa_r Gaussian white nois_,e was gqua_th&o: FIG. 7. Magnitude of the Fourier Transform of Hamming windows of
20x 10-35+3/20with k € {1, ..., 7}. 400 signals with different gitferent length.
noise realizations were simulated for each of the 7 noise levels.

The modulus of the Fourier transform of one signal of the dataset

|
S
L.n
T

|
¥
[}

100
Frequency (Hz)

is plotted in Fig. 6. The window is normalized such that, f(k) = 1. Its highest
sidelobe is at-43 dB which is—20 dB lower than the highest
3.1. Visual Inspection sidelobe of a sine-shaped function. Its spectrum is plotted i

Fig. 7 for different lengths. The width of the main lobe decrease:

The. description of the Gabqr, Marian "fll'f and SOdf’T”O and when the length of the window increases. A 25 points window
Delepierre methods does not impose a finite length filter but Hgt_ﬂg dB at 0.061 Hz and is probably not long enough for

the user choose one. Our test window is the common Hammig . ) .
. arating the water peak from the first metabolite peak.
window (17) of length 2T, + 1: @p 9 P P

As recommended], we use a sixth order Butterworth filter
with different bandstop widths in the Cross case.
0.54+0.46 cosrk/To) - Ik| = TZ_ We now control the efficiency/effect of the methods by vi-
0 otherwise sual inspection of the spectra after water filtering. Parametel
indicated in Fig. 6 were chosen because our subsequent st
tistical analysis demonstrates their relevance. The water pe:
is well suppressed with methods of Gabor, Mareirel., and

f(k):{

5000

5000 ; d — 5000

Marion et al. : Sundinet al, but not with the schemes of Cross or Sodano
4000 4000 4000y e | and Delepierre. With Sodano, an attenuated water peak remai
3000 3000 3000 E because the ter@(t) — S(t + T2) f (0) in Eq. [24] cannot be ne-
2000 2000 2000 p okl glected. In other words, the water peak is not stationary enoug
1000 1000 1000 SO on the filter length. The Cross method does not suppress the ta

of the water peak.

0 - - - 0 0
-100 0 100 200 -100 O 100 200 —-100 O 100 200

Frequency (Hz) Frequency (Hz) Frequency (Hz) 3.2. Statistical Inspection

5000 —15000 5000
Soflano and

Sundin et al. - The previous inspection is not sufficient, and we will check

4000 Dlepierfe {4000 4000
30001 130000/ AL 3000 : whether:

2000 f ok 1120000/ o f Ak ] 12000 ) o the metabolite parameters can be estimated without bia
1000} Jt- Mool 4 WNC R Mpoool -5 ) L - . after water peak suppression,

0 0 4l 0 e the root mean square errors of the estimated paramete
—-100 0 100 200 -100 O 100 200 -100 O 100 200 are close to the Craen-Rao Bounds (CRB) of the standard
Frequency (Hz) Frequency (Hz) Frequency (Hz)  gaviations for unbiased estimators,

FIG.6. Example of spectra magnitude before and after removing the resid- e our proposed parameter corrections are relevant.

ual water signal with the different methods. Noise level 3, Method parameters: e . . -
Gabor: 35 points Hamming windowiarion et al.: 45 points Hamming win- Quantitation is performed with the model fitting method

dow, M = 44: Sodano and Delepierre1 points Hamming windowCross:6 AMARES. When testing the method of Sundiet al,
order Butterworth filter, cuttoff frequency 20 Hz. guantitation is also performed with AMARESa nonlinear
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-0.1 f R = e Generally speaking the amplitudes are slightly over-
= ——¥———F==—F"————=—"% _ _ & estimated after Sodano and Delepierre removal, except with t}
p---g---8--- 8- -- - -7 :g:,—:ii 31 points window. Results obtained with a 21 points window are
OISR ST RS SRS IR gt of the axis limits. The proposed corrections are necessa
; : : : /e/ especially when the window is short, but the estimated amplitud
5 o © — —© | isstill slightly biased. A short examination on peak 2, confirms
z : this conclusion and it is supported by the fact that the water pec
is not totally suppressed.
—oa5k e In many cases the quantification algorithm does not con
verge after the Cross removal method. When it converges, tt
L result is biased.
0.3 ; — — ] o If the signal is filtered with the maximum phase filter and
! ? P kool o 7 then quantified with AMARES, a bias exists. To avoid bias, one
0.05 can correct those estimatagosteriorias in Egs. [36] to [39]
or, as explained in Section 2.6 one can use AMAREShich
includes the effect of the filter in the quantitation algorithm.
Both methods are as efficient at high SNR, but the latter seen
slightly better at low SNR.
P e At noise level 7, all methods are slightly biased.
m
& 3.2.2. Root mean square errorThe Cranegr—Rao bound
(CRB) is equal to the lowest variance/standard deviation the
0.05
00 2 3 4 5 6 7 e _
Noise Level :
FIG. 8. Estimated relative amplitude bias with Gabor method. (Top) Nc o —0.05- /
correction applied; (Bottom) Correction applied. Each mark corresponds ton :
specific window length:{) 21 points, ©) 25 points, §) 31 points, &) 35 points, 3 :
(d) 41 points, ) 45 points, {\) 51 points. “ 0 S 1
~0.15}- AT
least squares algorithm which takes into account the filte ; /
effect. - f f : —
The parameters, amplitude, frequency, damping, and phe 1 2 3 4 5 6 7
are estimated without any prior knowledge. Noise Level
To shorten the study, we will only focus on the quality of the 0.05 7 f ' ' f
amplitude of peak 1 at 61 Hz. This peak stands very close to tl '
water peak and is therefore more affected by the treatment th ‘Y
the others. N S x % . ;f/.A
. . / .
3.2.1. Which methods are unbiased™ Figs. 8 to 12 we 3z F oo ¢ T X m T X m e - -
plot the relative amplitude bias for each method. We would k2 of == =8 =-=38===38-==8=-=2§""
to stress that: A Amm Ao Ao &
o After a Gabor removal scheme, the quantification is biase
But the proposed correction leads to unbiased estimates. It
robust in the sense that unbiased results are obtained, exc : : :
at noise level 7 (lowest SNR), with all the tested windows, s -0.05 i i ‘ i i
) . ] : 1 2 3 4 5 6 7
even if the mainlobe of the filter spectrum overlaps with the Noise Level
metabolite peak.
FIG.9. Estimated relative amplitude bias with the method of Magbal.

e The amplitude quantification after Mari@bal.removal is ) i . ,
(Tep) No correction applied; (Bottom) correction applied. Each mark corre-

unbiased only if the metabolites are in the stopband region O i< to a specific window lengthe) 21 points, ©) 25 points, €) 31 points,

the filter (window length>31 points). The proposed correction . 35 points, (1) 41 points, ¢) 45 points, ) 51 points.M is equal to the
is not efficient. length of the window minus 1.
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FIG. 11. Estimated relative amplitude bias with the method of Cross: no

correction applied. Each mark corresponds to a specific cutoff frequency of th
6th order highpass filter measured-e dB: (+) 15 Hz, (©)20 Hz, ¢) 25 Hz,
(x) 30 Hz, () 35 Hz, ©) 40 Hz, (A) 45 Hz.

Rel. Bias

e The performance of the Gabor method is close to the the
oretical lower bound provided one chooses the window lengtl
correctly. Short windows are preferred because long windows
although they properly separate the water peak and the met
bolites, require the removal of a large number of points at the
beginning of the treated signal, resulting in a degradation of th
quality of the parameter estimates due to an increase in standa
deviation.

FIG.10. Estimated relative amplitude bias with the method of Sodano and o The performance of the method of Marien al. may be
Delepierre. (Top) No cor_r_ectio_n applied;(B(?ttom) cqrrection applieq.Each maﬂbod at low or high SNR as long as the window is longer thar
corresponds to a specific window length:)(21 points, O) 25 points, §) . . . . . .
31 points, &) 35 points, 1) 41 points, ©) 45 points, () 51 points. 35 points. A cprrect window length choice is crucial to avoid

inaccurate estimates.

e At high SNR, the RMSE with the solution of Sodano and
one can expect from an unbiased estimator. This bound increa@etepierre is far from the CRB and one cannot recommend thi
with the noise level 18). However, we are not interested in its
fluctuations, but in the relation between the Root Mean Square
Error (RMSE) of the estimator and the lowest standard deviatit
over all sets of unbiased estimators. So we will plot the quanti
RMSE/CRB..

The previous quantity is only meaningful for an unbiase
estimator. So, the following will concern:

~0.05 i i i i i
4
Noise Level

e the corrected parameter estimates after Gabor solvent . 05—
moval,

e the noncorrected parameter estimates after Magioal.,
solvent removal,

e the corrected parameter estimates after Sodano
Delepierre solvent removal ‘ : : ‘ ‘

e the parameters estimated with AMARE®r theaposteri- 0%, : : ' ' ,
ori corrected parameter estimates after maximum phasefilterii .y,

Rel. Bias

c

Noise Level

As the Cross method leads to highly biased results, we excluy EIG. 12. Estimated relative amplitude bias when using a maximum phase
it from this analysis ’ filter to suppress the solvent peak. The filter is chosen according to Setralin

. . . (9): (%) the FID is filtered and then quantified with AMARES)] the FID is
In Figs. 13 to 16 we focus on the amplitude. According tfiered, quantified with AMARES, and the estimates are correatpdsteriori
these results one observes that: (see Eq. [36]); ) AMARES;.
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RMSE/CRB
RMSE/CRB

Noise Level Noise Level

FIG. 13. Ratio of the RMSE to the Craen~-Rao bound of the amplitude  FIG. 15. Ratio of the RMSE to the Craen-Rao bound of the amplitude
with Gabor method. The estimated parameters were corrected. Each mark camith the method of Sadano and Delepierre and with parameter correction. Ea
sponds to a specific window length:) 21 points, ©O) 25 points, ) 31 points, mark corresponds to a specific window length) @1 points, ©O) 25 points, §)

(x) 35 points, [J) 41 points, ©) 45 points, {\) 51 points. 31 points, &) 35 points, ) 41 points, ©) 45 points, {\) 51 points.

method. At noise level 5, it seems better. Is a short windowe have investigated various variations, like executing the whol
preferable to a long window? This is not obvious, since two efiftering step in the reverse direction: The initialization step is
fects compete against each other. A short filter implies a shdriven backward, then we filter forward and then backward
translation of the extracted solvent component and also a firom a theoretical perspective, this is equivalent to filter a mor
ter with a large transition band. So, those filters are not verggular signal. However, quantification results were not as goo
selective. To reduce the transition band, longer filters can &g those obtained with the method of Suneliral.
chosen, but the length of the translations involved in the methodin our experiment, the scheme of Sodano and Delepierre dol
of Sodano and Delepierre increases. not remove totally the water signal. The estimated damping (nc
o Filtering with a maximum phase filter and then quantifyingplotted) is biased. The estimated amplitude is also biased, esr
the signal leads to very satisfactory results. A slight advantageially with a short window. In that case, correcting this paramete
gained from taking into account the filter correction in the quais essential. But, in our example, a bias remains even with co
tification step as proposed by Sundiral.(and nota posterior). rected parameters. It seems difficult to choose a window lengt
. ) . for which quantification will surely perform well, especially at
3.2.3. Discussion. As suspected, the Cross method did nqjiigh SNR.
lead to reliable quantification. When preparing this publication, The Gabor method leads to biased estimates of the amplitu

and unbiased estimates of the damping (not plotted). Correctir

RMSE/CRB
RMSE/CRB

Noise Level 1 2 3 4 5 6 7
Noise Level

FIG. 14. Ratio of the RMSE to the Craen~-Rao bound of the amplitude
with the method of Marioret al. and without parameter correction. Each mark FIG. 16. Ratio of the RMSE to the Craenr-Rao bound of the amplitude
corresponds to a specific window length:)(21 points, O) 25 points, ¢)  when using a maximum phase filter to suppress the solvent peak. The filter
31 points, &) 35 points, [J) 41 points, ) 45 points, \) 51 points.M is equal chosen according t®): (O) the FID is filtered, quantified with AMARES, and
to the length of the window minus 1. the estimates are correctagbosteriori(see Eq. [36]); ) AMARES;.
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the amplitude parameter is essential and leads to an unbiaseb should include some correction terms which depends on tt
estimator. This method is not very sensitive to the choice ofcaosen filter.
window. However the variance of the estimated parameter is
rather large at low or high SNR. APPENDIX A

The method of Marioret al. sometimes outperforms all the
other methods, but it may also be very unsatisfactory at high ~ Some Basic Properties of the Fourier Transform
SNR. For exgmple, we have n.otlced that the rqt|o RMSE/CRB We consider signals of finite energly,e L2(R). The Fourier
of the' amplltudel of pgak 3is gqual t07§ with the same transform off is denoted byf, namely,
45 points Hamming window which quantifies very well peak
1. A correct choice oM is also critical and difficult. At low R ‘
SNR this method may be recommended and is less sensitive to f(w) = / f(t)e ' dt [40]
the chosen parameters than at high SNR. R

Filtering with a maximum phase filter and quantifying th . . : -
remaining signal leads to overall excellent results when ta he. S|gnq|f can be rgcovered from its Fourier transfofriby
ing into account the filter effects. The estimated parameters 5 & Inversion formula:
unbiased and RMSE/CRBs always lower than .25. Sundin 1 . ,
et al. proposed to take into account the filter correction during f(t)= 2—/ f () do. [41]
guantification. The slight advantage oeguosterioricorrection TR
is confirmed when analysing the other peaks. Furthermore, i
prior knowledge is available, the method of Sundiral. can
take it into account.

fWith P e Nandg(t) = (-it)P f(t) in L2(R), the pth deriva-
tive of f is equal to the Fourier transform gf

£ () = d(w). 42
4. CONCLUSION (@) = 9(w) [42]

Many spectral line removal techniques are based on the filter—One can prove that if

ing concept. From a signal processing perspective, they mainly
differ on the treatment of the first FID points. / | f(@)|(1 + |o|P) do < +o0, [43]
Furthermore this study emphasizes two key points: R

e FID quantification must take into account the spectral lifge functionf is bounded ang times continuously differen-
removal processing if one intends to estimate the metabolitéle with bounded derivatives. The decay|6f at high fre-
concentration without bias and with high accuracy. This conclguencies depends on the worst singular behaviodir 8o, if f
sion is very general and future quantification techniques miggdiscontinuous at one point (and continuous everywhere else
include corrections based on all the acquisition steps. They cah(w)| decreases slowly, typically likg;,. So the spectrum is
not be independent from the acquisition technique. largely affected by this local discontinuity or this local worst

e Among the five post-processing methods tested, the méghavior.
efficient method in terms of quantification after spectral line Another well-known property is the convolution theorem.
removal is the one proposed by Sunédirel. (9). It has several Suppose that andg are inL*(R), then the convolution product
advantages: h(t),

—it is the only one that is fully automatic —even if most
of the other methods could be automated.

—it is unbiased and its performances are very close to the
best possible method at high or low SNR for the damping and tisecontinuousin terms of Fourier transform one has
amplitude. The maximum phase filter better takes into account

h(t) = f xg(t) = /R f(t —t)g(r)dr [44]

the information contained in the first point of the FID and yet h(w) = f(w)j(w). [45]
does not need additional assumptions on the solvent signal.

—prior knowledge may be taken into account during quan- APPENDIX B
titation.

Approximate Expression of the Gabor Transform

So Sundin’s method should be considered as the reference of a Water or Metabolite Peak

method for spectral line removal based on FID filtering.

With spin-echo sequences there is no border effect and théVe seek an approximate expressior®f s(t, ). Sis sup-
problem s slighty different. Afilter based method should removeosed to be a water or metabolite peak whose definition is give
very well the solvent line. As in the FID case, the quantificatioat the beginning of Section 2.1.
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Most of the following results and approximations come fronihe last term may be bounded,
the time-frequency/scale analysi 4, 19.

We say that a functior\ is regular on an intervdl = [a, b], ICalt, )]
if for somen e N\{0}, A"~1(z), then — 1 derivative ofA, is me
continuous ond, b] and A™(r) exists for everyr € (a, b).

Tl
fT f(u 4+ 1)(=0)" e ((t = 1) — v)

1—|

Under the assumption that(z)A(z) is regular enough on x e (o= gy

=[-To+t,—Ty +t] (sot ¢ [T, Tp)), Taylor's theorem
implies that, for everye and 8 in I;, there exists a poink SUP e(_Tpst,—Tyst) |AM (7))
betweery andg such that = : al

®(a) A9 i
o n
UBAP) = Y (B —a) + o) [46] x /m [T+ Dl dv,
-1 AM (o) for instance if the impulse response of the filteris finite.

= m (B —a) +rna(B)(B—a)". [47] This bound essentially depends on the supremurA@t(z)|
k=0 ™ on(—Ty+t, =Ty +1).

In particular, withn = 1,
If |AM ()] is boundedrn,a(ﬂ) will also be bounded

Grglt, w) = @@tDHoreD (AR — 1) ) o(wo — w) + Ca(t, ))

M (B)l < —| sup_ |A"(z)]. [49]
ND 7 e(—Tott, —To+t)

_ o Nawd £f i (wo(t—1)+o-+ol)
Letl be the pointwheré is maximum or the average location. = St —Ne” fwo — o) + €™ Calt. )
In the latter case, [50]
_ Jetl f (1)1 dt‘ Then, under the assumption thar) varies slowly on T, +
Je 1 T@®)12dt t, — Ty +t], which means thaf®)(z) is very small on this inter-

val, G s(t, wp) and the filtering method lead to good approxi-

We rewrite Eq. [1] expandind\(t) aroundt — I, with the addi- mations ofS up to a correction term.

tional hypothesist > T,, which means that we are seeking for

an approximation outside of the transients. Then, ACKNOWLEDGMENTS
T2 | .
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