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Suppressing the solvent peak is important in many applications of
biomedical NMR spectroscopy in order to quantify the metabolites
with a great accuracy. Among the postprocessing methods proposed
in the literature, many deal with the concept of filtering. However,
several proposals lack a theoretical perspective and some have not
been explicitly applied to quantification problems. The present arti-
cle is intended to bridge this gap: five methods are analyzed from a
theoretical perspective. Subsequently the different methods are ap-
plied to the same set of data, and then the latter are quantified using
the model fitting method AMARES. With our set, the scheme pro-
posed by T. Sundin et al. (J. Magn. Reson. 139(2), 189–204 (1999))
proved to be the most reliable method. C© 2001 Academic Press

Key Words: peak suppression; quantitation; filter; time-frequency
analysis.
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1. INTRODUCTION

In biomedical applications of proton NMR spectroscopy,
large solvent water resonance must be suppressed in ord
allow an adequate quantitation of the solute. However, as
usually intends to quantify metabolites, suppressing the so
peak should not alter them.

Many methods have been proposed in the literature and
can be classified in two groups: on the one hand, the puls
quence methods and hardware methods, on the other han
postprocessing methods (1). The two groups should be used
conjunction for better results.

Most of the proposed postprocessing methods rely imp
itly or explicitly on the signal processing concept of filte
ing. However, several proposals lack a theoretical perspe
and some have not been explicitly applied to quantifica
problems.
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• making the connection between some of the methods f
a theoretical point of view;
• comparing the accuracy of the final parameter estim

obtained by quantifying the signals processed by the diffe
methods.

The methods we have chosen are:

• a Gabor transform based method (2), which is a valuable
alternative to the wavelet transform based method (3–5);
• the method of Marionet al. (6);
• the method of Sodano and Delepierre (7);
• the Cross method (8);
• the Finite Impulse Response (FIR) filter based method

veloped by Sundinet al. (9).

These have been chosen because they are based on fil
and they provide variations on the “filtering scheme.”

2. FILTERING AN NMR FID

In this Section, we study the different solvent peak supp
sion methods from a theoretical point of view. In Section 2.1
explain the common feature of all compared methods, i.e.,
extraction of the solvent signal using a filter. We then disc
the inherent difficulties associated with the use of a filter.
Sections 2.2 to 2.6 we describe the different implementation
pects of each method in detail and examine the consequenc
the solvent removal step on the quantification procedure. Fin
in Section 2.7 the main characteristics of the filtering meth
are summarized.

2.1. The Filtering Method and Its Limitations

The general form of a water or metabolite peak of an F
signal isS(t) = A(t)ei (ω0t+φ)U (t) where:

• the pulsation and the phase at the time origin of the p
areω0 ∈ R andφ ∈ R;
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• A(t), the amplitude of the signal, is of finite energy, rea
positive, and regular onR. The exact definition of regular is
provided in Appendix B. For an FID,A(t) has a maximum
aroundt = 0 and decreases whent increases. The exact form
of the peaks is usually unknown. However, the amplitude of
metabolite peaks will sometimes explicitly be modeled with
damped exponential.
• U (t) is the Heaviside step function:

U (t) =
{

0 if t < 0,

1 if t ≥ 0

As soon asA(0) 6= 0, S(t) is discontinuous att = 0. So the
Fourier transform̂S(ω) of S(t) decays slowly at high frequency
leading to a large peak tail (see Appendix A for some use
properties of the Fourier transform̂Sof the signalS).

In the sequel, we explain how the water peak can be s
pressed using a generalized filtering framework.

Once and for all, we assume thatT1 andT2 are two real con-
stants with−∞ ≤ T1 < T2 ≤ +∞ and that the support of the
function f is [T1, T2], i.e., f (t) = 0 if t /∈ [T1, T2]. The energy
of f is supposed to be finite.

By ∗ and f̄ , we denote the complex conjugate and the funct
f̄ (τ ) = f ∗(−τ ) respectively. We also define the family of func
tions ft,ω(τ ) = f (τ − t)eiω(τ−t) with (t, ω)∈R2. Each element
of this family is a frequency and time translated version of t
reference functionf .

The following function,

G f̄ ,S(t, ω) = 〈( f̄ )t,ω, S〉

=
∫
R
( f̄ (τ − t)eiω(τ−t))∗S(τ ) dτ [1]

can be interpreted as a weighted sum of (f̄ )t,ω andS. It defines
the Gabor transform ofSwith a window f̄ and is a generalization
of the filtering notion because

G f̄ ,S(t, 0)= f ∗ S(t). [2]

According to Appendix B, an approximate expression
G f̄ ,S(t, ω) under the assumption thatA(τ ) varies slowly on
[−T2+ t,−T1+ t ] is

G f̄ ,S(t, ω) = ei (ω0(t−l )+φ+ωl )(A(t − l ) f̂−l ,0(ω0− ω)+ C1(t, ω))

[3]

= S(t − l )eiω0l f̂ (ω0− ω)+ ei (ω0(t−l )+φ+ωl )C1(t, ω).

[4]
In the previous equations,
LVENT PEAK SUPPRESSION 27
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• l is the point wheref is maximum or the average location
In the latter case,

l =
∫
R t | f (t)|2 dt∫
R | f (t)|2 dt

.

• C1(t, ω) is an error term that can be bounded.

Then, under the assumption thatA(τ ) varies slowly on [−T2+
t,−T1+ t ], which means thatA(1)(τ ), the first derivative ofA(τ ),
is very small on this interval,G f̄ ,S(t, ω0) and the filtering method
lead to good approximations ofSup to a correction term. So with
| f̂ (0)| ≈ 1, one can extractS from these transformations, eve
if the exact shape ofA(t) is unknown:

S(t − l ) ≈ G f̄ ,S(t, ω0)

eiω0l f̂ (0)
. [5]

In general, one extracts or suppresses one componenS0

among the sumSof many others. Let us now writeS(t) as

S(t) =
m∑

k=0

Sk(t) =
m∑

k=0

Ak(t)ei (ωkt+φk)U (t),

and by linearity ofG f̄ ,S,

G f̄ ,S(t, ω) =
m∑

k=0

Sk(t − l )eiωkl f̂ (ωk − ω)+ ε(t, ω). [6]

With ω=ω0 the componentS0(t) can be well extracted or sup
pressed if the bandstop or bandpass off is sharp enough.

However, because of the discontinuity of the FID att = 0, this
approximation is valid only fort < T1 or t ≥ T2, that is, outside
of the transients.

From another point of view, and according to the continu
property of a filtered signal (see Appendix A),G f̄ ,S(t, ω) is con-
tinuous at each pointt onR, although we intend to extract/sup
press fromS one and only one componentSk that is discontin-
uous att = 0. This is the main difficulty.

So the question is: Is it possible to recoverSk and in particular
points around its discontinuity with a filter based techniqu
From an accurate quantitative perspective, properly getting th
first points is essential because the power of the metabo
components is maximum there.

Before studying the solution proposed by the different a
thors, let us point out an exact result concerning the metab
represented by modulated damped exponentials (9). Defining

S(t) =
m∑

S (t) =
m∑

A e−dktei (ωkt+φk)U (t),

k=1 k=1
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its transformG f̄ ,S is

G f̄ ,S(t, ω) =
m∑

k=1

Ake−dktei (ωkt+φk)

×
∫ T2

T1

f (u)edku−i (ωk−ω)uU (t − u) du.

If t ≥ T2 the shape of the metabolite signals remains unchan
after filtering,

G f̄ ,S(t, ω) =
m∑

k=1

Sk(t)Ff̄ ,k(ω) [7]

up to some weighting factors:

Ff̄ ,k(ω) =
∫
R

f (u)edku−i (ωk−ω)u du. [8]

Compare Eq. [6] with [7]; Ifdk = 0, Ff̄ ,k(ω) = f̂ (ωk − ω).
Now, we will examine the five solutions mentioned in th

introduction. We will explain their specific implementation d
tails and their effect on the actual estimation of the parame
of the metabolites of interest. The methods mainly differ in
exact choice of filter and in the treatment of the datapoints
t < T2.

We consider that the analyzed signalS(t) is the sum of a sol-
vent peakS0(t) andm metabolite peaksSk(t) (k ∈ {1, . . . ,m}),
modeled by damped exponentials

S(t) =
m∑

k=0

Sk(t) [9]

=
(

A0(t)ei (ω0t+φ0) +
m∑

k=1

Ake−dktei (ωkt+φk)

)
U (t) [10]

with A0 a regular real and positive function of finite energ
Ak ∈ R+, (dk, ωk, φk) ∈ R+ × R2 for k ∈ {1, . . . ,m}.

2.2. Gabor Solution

As mentioned earlier, Eq. [1] is the definition of the Gab
transform ofS. This transformation has many interesting pro
erties (10) and is closely related to the wavelet transform. T
wavelet transform was applied more than ten years ago to
solvent suppression problem (4, 5) and later to the dynamica
phase correction problem (3).

However from a spectroscopist perspective, the Gabor tr
form is more natural than the wavelet transform for solvi
the problems mentioned above. In fact, spectroscopists pr
a transform that is covariant under frequency translation (
Gabor transform) to a transform that is covariant under dilat
(the wavelet transform) (2). In other words, ifS1 is a frequency
shifted version ofS,
S1(t) = ei ζ0t S(t)
ET AL.
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with ζ0 ∈ R, then the covariance under frequency translat
property of the Gabor transform implies that

G f̄ ,S1
(t, ω) = G f̄ ,S(t, ω − ζ0).

This property is most welcome in the context of NM
spectroscopy, since frequency translation is very comm
Unfortunately, the previous relation does not hold with
wavelet transform, except for the trivial caseζ0 = 0. Here we
focus on the Gabor transform only.

With this method, one chooses a lowpass analyzing wind
f̄ with finite support. Usually, it is a truncated Gaussian o
Hamming window, so it is real and centered around the or
(l = 0). The exact window type and width are chosen by the u
and not automatically. Then a convergence algorithm will fi
the estimated position ˙ω0 of the solvent peak in the spectrum
extract it, and remove it from the signal. The last filtering ste
of the algorithm are summarized in Fig. 1.
FIG. 1. Schematic representation of the Gabor Method.
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Using Eqs. [6], [7], and [10] the signal with the solvent pe
suppressed can be approximated by

SG(t) ≈
(

S0(t)(1− f̂ (ω0− ω̇0))+
m∑

k=1

Sk(t)(1− Ff̄ ,k(ω̇0))

)
×U (t − T2). [11]

As no special treatment is provided in (3) for points beforeT2,
we set them to zero, by multiplying the signal byU (t − T2).
Shifting the origin by posingτ = t − T2, we get

SG(τ ) ≈
(

S0(τ + T2)(1− f̂ (ω0− ω̇0))+
m∑

k=1

Ake−dkT2

× (1− Ff̄ ,k(ω̇0))e−dkτei (ωkτ+φk+ωkT2)

)
U (τ ). [12]

If f̂ (ω0− ω̇0)= 1 the solvent and its tail are suppressed. The s
nal is a sum of modulated damped exponentials whose para
ters can be estimated using any of the standard estimation m
ods (e.g., black-box methods such as LPSVD (11) and HSVD
(12), interactive methods such as VARPRO (13) and AMARES
(14)).

In the sequel,A′k, d′k, ω′k, φ′k denote the estimated paramete
of SG. In order to get a good estimation of the parameters of
original metabolite peaks, and avoid bias, these raw parame
have to be corrected. We propose new estimates that wil
denoted byȦk, ḋk, ω̇k, φ̇k:

Ȧk = A′k
ed′kT2

|(1− Ff̄ ,k(ω̇0))| [13]

ḋk = d′k [14]

ω̇k = ω′k [15]

φ̇k = φ′k − ω′kT2− arg(1− Ff̄ ,k(ω̇0)). [16]

Note that only the amplitude and the phase have to be correc

2.3. The Extrapolation Method of Marion et al.

With this method (6), the frequency of the solvent pea
is supposed to be 0. With complex signals, the solvent p
may be shifted to zero by modulation. The signal is filter
with a finite length lowpass filter like a sine-bell or truncate
Gaussian function of length 2T2 centered on the origin. Its ex
act shape is chosen by the user. So we getG f̄ ,S(t, 0). Points of
G f̄ ,S(t, 0) whose abscissa is smaller thanT2 are not removed,
but are replaced by linear extrapolation of the pointsG f̄ ,S(T2, 0)
andG f̄ ,S(T2+ M, 0), (M ∈ R+):

S′M (t) = G f̄ ,S(T2, 0)+ t − T2

M

× (G f̄ ,S(T2+ M, 0)− G f̄ ,S(T2, 0)). [17]
LVENT PEAK SUPPRESSION 29
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In the original publication, the signal is supposed to be discr
and because of the circular convolution, one extrapolates
the lastT2 points. In the sequel of this section, we omit the lat
interpolation. A schematic diagram of the method is presen
in Fig. 2. The solvent peak extracted by Marionet al. is con-
tinuous but in general not differentiable att = T2. Finally, this
FIG. 2. Schematic representation of the Marion method.



e

n

o

e

t
0

d.

k
uld
30 CORON

signal is subtracted from the original signal to obtain the solv
suppressed signalSM (t).

If t ≥ T2, an approximation of the solvent suppressed sig
is almost the same as Eq. [11],

SM (t) ≈ S0(t)(1− f̂ (0))+
m∑

k=1

Sk(t)(1− Ff̄ ,k(0)), [18]

and if t ∈ [0, T2),

SM (t) ≈ S0(t)− f̂ (0)

×
(

S0(T2)+ T2− t

M
(S0(T2)− S0(T2+ M))

)
+

m∑
k=1

Sk(t)

(
1− e−dk(T2−t)eiωk(T2−t) Ff̄ ,k(0)

×
(

1+ T2− t

M
(1− e−dk Meiωk M )

))
. [19]

So the solvent line will be well suppressed if the linear appr
imation is valid. The first time points of the metabolites a
conserved but might be distorted ifFf̄ ,k(0) 6= 0. This distortion
is time and frequency dependent.

Now if SM is quantified, it is very difficult to take into accoun
the modified first points. If the estimated parameters ofSM are
A′k, d′k, ω′k, andφ′k, we propose to estimate, as before, the r
parameters with the corrections

Ȧk = A′k
|1− Ff̄ ,k(0)| [20]

ḋk = d′k [21]

ω̇k = ω′k [22]

φ̇k = φ′k − arg(1− Ff̄ ,k(0)). [23]

2.4. Sodano and Delepierre Solution

The method proposed by Sodano and Delepierre (7) is based
on the assumption that the solvent peakS0 is slowly varying for
t ≥ 0 and differentiable onR∗ with | dS0

dt (t)| small. As a conse-
quence, the solvent peakS0(t) centered aroundω0 = 0 is well
approximated byG f̄ ,S(t + T2, 0) (t ≥ 0). f (t) is a finite length
lowpass filter chosen by the user, whose support is [−T2, T2]
symmetrical. Then this approximation is subtracted from
original signal (see Fig. 3). According to Eqs. [4], [7], and [1
the signal with the solvent peak suppressed is

SSo(t) ≈
(

S0(t)− S0(t + T2) f̂ (0)

m∑ ( −dkT2 iωkT2
))
+

k=1

Sk(t) 1− e e F f̄ ,k(0) U (t). [24]
ET AL.
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FIG. 3. Schematic representation of the Sodano and Delepierre metho

The discontinuity att = 0 is preserved and the tail of the pea
is removed. According to Eq. [24] suitable corrections sho
be applied on the estimated peak parametersA′k, d′k, ω′k, andφ′k
of SSo(t). We propose again

Ȧ = A′k [25]
k |1− e−d′kT2eiω′kT2 Ff̄ ,k(0)|
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ḋk = d′k [26]

ω̇k = ω′k [27]

φ̇k = φ′k − arg(1− e−d′kT2eiω′kT2 Ff̄ ,k(0)). [28]

2.5. Cross’s Solution

We suppose the solvent peak to be at zero Hertz. If it is not,
modulates the complex signal to shift the solvent peak to zero
that case, after suppressing the water peak, an extra modul
step will move the spectrum and the metabolite peaks bac
their original position.

The signal, with solvent peak at zero frequency, is filter
twice, once backward and then forward with a real cau
(T1 ≥ 0) highpass IIR butterworth filter (15, 16), to avoid phase
distortion and transients (8):

The transient response and the phase shift are eliminat
by treating the FID as though it had mirror symmetry abou
the first and the final data points. [The signal is here sup
posed to be discrete.] The filter is run forward over the FID
with a weighting function that increases from zero to one
the output from this stage of the filtering being ignored.
With the filter now initialized, the data are filtered from the
last point to the first point and the filtered data saved. Th
frequency-dependent phase shift is then eliminated by run
ning the filter forward from the first to the last data point
of the filtered data to give the final output.
When the FID dies away to zero, the first initialization st

can be avoided, as we will do in the sequel of this section
that case, the solvent suppressed signal is

SC(t) = ( f ∗ (S′′C + S′C)(t))U (t) [29]

= 〈( f̄ )t,0, S′′C + S′C〉U (t), [30]

where

S′C(t) = ( f̄ ∗ S(t))U (t) = 〈 ft,0, S〉U (t)
[31]

S′′C(t) =
{

S(−t) if t < 0,

0 otherwise.

One can show that, ift > 0,

S′C(t) = f ∗ ∗ S′′C(−t).

As f is real, the symmetry stated by Cross is respected by
mathematical formulation.

Figure 4 is an unfolded illustration of this scheme. The fil
denoted by (b) in the figure implements both the backward
tering and the last forward filtering step: fort < 0, the output of
this filter is the output of the backward filtering step. It is equ

to the input of the filter at point−t , which is also the output
OLVENT PEAK SUPPRESSION 31
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of the filter (a) at−t . For t > 0 the output of the filter (b) is
the output of the last forward filtering step. So we conclude t
the input of the filter (b) is not continuous. One can expect t
this scheme will not totally suppress the solvent peak and m
distort the metabolite signals.

FIG. 4. Schematic representation of the Cross method. The first initial

tion step is not represented.



b

p
e

e
in
a
t

g
te

lo
e
0

er
in

.
d.
ials
dard
an

rd
32 CORON

If we notice that ¯̄f = f , an approximate formulation ofS′C,
with Sas [10] onR is

S′C(t) ≈
(

S0(t + l ) f̂ ∗(0)+
m∑

k=1

Sk(t)Ff,k(0)

)
U (t).

So a very rough approximation ofSC(t) for large positivet is

SC(t) ≈ S0(t)| f̂ (0)|2+
m∑

k=1

Sk(t)Ff,k(0)Ff̄ ,k(0)

≈ S0(t)| f̂ (0)|2+
m∑

k=1

Sk(t)
∫
R
0∗f (τ )e−dkτeiωkτ dτ

≈ S0(t)| f̂ (0)|2+
m∑

k=1

Sk(t)F0 f ,k(0) [32]

with 0 f the autocorrelation off . However, asf is an IIR filter,
Ff̄ ,k(0) might be very large or infinite. If the dampingdk is near
0, and0 f (τ ) decreases quickly, another approximation could
written

SC(t) ≈ S0(t)| f̂ (0)|2+
m∑

k=1

Sk(t)| f̂ (ωk)|2. [33]

We have checked that these two filtering steps might avoid ph
distortion. But, for smallt , the solvent peak may not be su
pressed, and the metabolite peaks might be distorted. Henc
will not propose any parameter correction.

One should also remark that filtering a signal twice with a r
filter, once forward and once backward, is equivalent to filter
a signal with a single filter whose impulse response is real
symmetric about 0. This makes the connection with some of
previous methods where a symmetric real FIR filter was use

2.6. The Maximum Phase Method of Sundin et al.

The signal is filtered with a causal (T1 ≥ 0) finite length
(T2 <∞) high pass filter (see Fig. 5). An automatic filter desi
scheme (9) takes care of the appropriate choice of the fil
parameters and estimates the position ˙ω0 of the largest peak in
the spectrum. The only parameter the user must specify is
approximate frequency of the peak of interest that lies clos
to the water peak. After filtering we getG f̄ ,S(t, ω̇0). Points of
G f̄ ,S(t, ω̇0) whose abscissa are smaller thanT2 are removed. By
the use of a maximum-phase filter, the information content
by discarding those points is minimal. The signal with the solv
peak suppressed can be written as (see Eqs. [6], [7], and [1

SSu(t) = f0,ω̇0 ∗ S(t) = G f̄ ,S(t, ω̇0)

≈
(

S0(t − l )eiω0l f̂ (ω0− ω̇0)+
m∑

k=1

Sk(t)Ff̄ ,k(ω̇0)

)

×U (t − T2). [34]
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FIG. 5. Schematic representation of the Sundin method.

And 0 ≤ l ≤ T2 because the impulse response of the filt
is causal, not centered around 0. If we change the orig
τ = t − T2, we obtain

SSu(τ ) ≈
(

S0(τ + T2− l )eiω0l f̂ (ω0− ω̇0)

+
m∑

k=1

Ake−dkT2eiωkT2 Ff̄ ,k(ω̇0)e−dkτei (ωkτ+φk)

)
U (τ ).

[35]

Compare [11] (respectively, [12]) with [34] (respectively, [35])
If f̂ (ω0 − ω̇0) = 0 the solvent and its tail are suppresse
The signal is again a sum of modulated damped exponent
whose parameters can be estimated using any of the stan
estimation methods. An estimate of the original parameters c
be obtained fromA′k, d′k, ω′k, andφ′k using the formulas

Ȧk = A′k
ed′kT2∣∣Ff̄ ,k(ω̇0)

∣∣ [36]

ḋk = d′k [37]

ω̇k = ω′k [38]

φ̇k = φ′k − ω′kT2− arg(Ff̄ ,k(ω̇0)). [39]

However, estimation cannot be performed with standa

methods if prior knowledge concerning the amplitudes or
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TABLE 1
Summary of the Methods

Property Gabor Marion Sodano Cross Sundin

Filter Lowpass Lowpass Lowpass Highpass Highpa
Solvent peak

position Anywhere 0 Hz 0 Hz 0 Hz Anywhere
Automatic filter

design No No No No Yes
Metabolite

distortion No Yes No Yes No

phases is to be taken into account. The influence of the filte
these parameters must be considered directly in the estima
procedure to yield correct estimates. In (9) it is proposed to
minimize the squared difference between the filtered signal
the filtered model function derived in Eq. [35]. The quantitati
method taking into account the influence of the filter in t
minimization procedure is denoted by AMARESf .

2.7. Summary

We summarize in Table 1 the main characteristics of
different methods. In the row “Metabolite distortion” a “Yes
means that the filtered metabolite signals are no longer dam
exponentials. With the Marion method, this distortion is limit
to the first points. The row “Solvent peak position” describes
position of the solvent peak when applying Eq. [1]. If the sign
is complex and the water peak is not at 0 Hz, Marion, Soda
and Cross methods can be applied after shifting the water p
to zero by modulation. The other methods prefer modulating
filter.

All the methods assume that the solvent peak is regular eno
to be suppressed by filtering. However, because of the disco
nuity at 0, one cannot recover easily the first points. Marionet al.
extrapolate those points, Cross tries to enhance the regular
the signal, Sodano and Delepierre subtract a translated ve
of the extracted peak, and Sundinet al. discard the first points
but use a maximum-phase filter to minimize the information l
in these samples.

From a quantitative perspective, properly recovering th
first points is important because the power of the signa
maximum here. However, if it is not possible, dropping the
could be a better solution.

One should remark that the preceding methods are base
filtering and some other treatments like the multiplication o
filtered signal byU (t). The solvent suppressed signalcannotbe
written as a single convolution of the FID with a functionf ,
because of the latter operation. As a consequence the Fo
transform of the solvent suppressed signalcannotbe written as
a single product of the Fourier transform of the FID andf .

If the metabolite component is not a Lorentzian and var
quickly, then the model function of the metabolite is altered
filtering for t < T and for t ≥ T . The shape of the metabolit
2 2

signalSk after filtering is changed toS′k. To quantify the original
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metabolite signal, one has to fit the metabolite signal after fil
ing with S′k and map those extracted parameters to the orig
parameters ofSk. In summary, if the appropriate model functio
of the metabolites is known, a similar derivation as was don
Eqs. [13]–[16] can be made to investigate the effect of the fi
on the model function of the metabolites.

3. THE TEST EXAMPLE

Our test example simulates a1H MRS signal. Experimenta
1H signals are normally acquired with some water suppress
technique, however some water signal usually remains. E
simulated signal of our dataset is the sum of three compone
residual water, five metabolites, and noise. The amplitude ra
between residual water and metabolite peaks are usually
tween 10 and 100, and the linewidths of the metabolite pe
are typically between 5 and 12 Hz.

The simulated signal was derived from an experimental sig
obtained from a water solution of 100 mM creatine (Cr) (C2
singlet, peak 1; CH3 singlet, peak 2), 100 mM acetate (CH3

singlet, peak 3), 50 mM t-butyl alcohol (3× CH3 singlet, peak
4), and 10 mM trimethylsilylpropionic acid (TSP, 3×CH3 sin-
glet, peak 5). A single-voxel signal from a spherical phantom w
acquired at 1.5 T (Vision, Siemens) using the STEAM seque
(TR/TE/TM= 20000/20/30 ms) with selective water suppre
sion. The acquired phantom signal was quantified with HS
using a high model order (M = 100). The residual water sig
nal was subsequently reconstructed with all the exponenti
damped sinusoids with frequencies between [−30 and 30] Hz
and with amplitudes above the estimated noise level ˆσ ' 7.5.
The parameters of the seven peaks used to reconstruct the
resonance are found in Table 2.

The five metabolite peaks were modeled as exponenti
damped sinusoids with frequency, phase, and damping c
to what was measured in the phantom experiment. The am
tudes of the peaks were chosen to be approximately equal t
estimated TSP amplitude and set equal for all peaks excep
the two Cr peaks whose 2 : 3 ratio was kept. The signals (FI
are 512 points long with a sampling frequency of 1000 Hz. T
exact parameters used in the simulation examples are give
Table 3. The amplitude ratio between the residual water p

TABLE 2
Estimated Water Signal Parameters Used in the Reconstruction

of the Water Peak

fwk (Hz) dwk (Hz) φwk (◦) Awk (a.u.)

−8.48 5.10 −90.88 15.01
−5.25 8.28 −45.19 64.74
−2.16 10.51 −2.95 321.25
−0.18 12.45 179.97 1142.30
−0.17 4.24 −170.39 251.92

3.09 6.79 36.77 201.11

6.31 4.00 81.11 12.30
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TABLE 3
Metabolite Parameters Used in the Simulated Signals

Peakk fk (Hz) dk (Hz) φk (◦) Ak (a.u.)

1 61 7 0 20
2 118 7 0 30
3 189 7 0 20
4 231 7 0 20
5 311 7 0 20

(frequency around 0) and the closest metabolite peak (pea
frequency 61 Hz) is 43.

The added complex noise was white and circular Gaus
distributed. The noise standard deviation was varied to simu
seven SNR. The standard deviation of the real or imagin
part of the circular Gaussian white noise was equal toσk =
20×10(−35+5k)/20 with k ∈ {1, . . . ,7}. 400 signals with different
noise realizations were simulated for each of the 7 noise lev
The modulus of the Fourier transform of one signal of the data
is plotted in Fig. 6.

3.1. Visual Inspection

The description of the Gabor, Marionet al., and Sodano and
Delepierre methods does not impose a finite length filter bu
the user choose one. Our test window is the common Hamm
window (17) of length 2T2+ 1:

f (k) =
{

0.54+ 0.46 cos(πk/T2) |k| ≤ T2

0 otherwise.

FIG. 6. Example of spectra magnitude before and after removing the re
ual water signal with the different methods. Noise level 3, Method parame
Gabor: 35 points Hamming window;Marion et al.: 45 points Hamming win-

dow, M = 44; Sodano and Delepierre:21 points Hamming window;Cross:6
order Butterworth filter, cuttoff frequency 20 Hz.
ET AL.
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FIG. 7. Magnitude of the Fourier Transform of Hamming windows
different length.

The window is normalized such that
∑

k f (k) = 1. Its highest
sidelobe is at−43 dB which is−20 dB lower than the highes
sidelobe of a sine-shaped function. Its spectrum is plotte
Fig. 7 for different lengths. The width of the main lobe decrea
when the length of the window increases. A 25 points wind
is −17.9 dB at 0.061 Hz and is probably not long enough
separating the water peak from the first metabolite peak.

As recommended (8), we use a sixth order Butterworth filte
with different bandstop widths in the Cross case.

We now control the efficiency/effect of the methods by
sual inspection of the spectra after water filtering. Parame
indicated in Fig. 6 were chosen because our subsequen
tistical analysis demonstrates their relevance. The water
is well suppressed with methods of Gabor, Marionet al., and
Sundinet al., but not with the schemes of Cross or Soda
and Delepierre. With Sodano, an attenuated water peak rem
because the termS0(t)−S0(t+T2) f̂ (0) in Eq. [24] cannot be ne
glected. In other words, the water peak is not stationary eno
on the filter length. The Cross method does not suppress the
of the water peak.

3.2. Statistical Inspection

The previous inspection is not sufficient, and we will che
whether:

• the metabolite parameters can be estimated without
after water peak suppression,
• the root mean square errors of the estimated param

are close to the Cram´er–Rao Bounds (CRB) of the standa
deviations for unbiased estimators,
• our proposed parameter corrections are relevant.

Quantitation is performed with the model fitting meth
AMARES. When testing the method of Sundinet al.,

quantitation is also performed with AMARESf , a nonlinear
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FIG. 8. Estimated relative amplitude bias with Gabor method. (Top)
correction applied; (Bottom) Correction applied. Each mark corresponds
specific window length: (+) 21 points, (s) 25 points, (∗) 31 points, (×) 35 points,
(h) 41 points, (e) 45 points, (n) 51 points.

least squares algorithm which takes into account the fi
effect.

The parameters, amplitude, frequency, damping, and ph
are estimated without any prior knowledge.

To shorten the study, we will only focus on the quality of t
amplitude of peak 1 at 61 Hz. This peak stands very close to
water peak and is therefore more affected by the treatment
the others.

3.2.1. Which methods are unbiased?.In Figs. 8 to 12 we
plot the relative amplitude bias for each method. We would l
to stress that:

• After a Gabor removal scheme, the quantification is bias
But the proposed correction leads to unbiased estimates.
robust in the sense that unbiased results are obtained, e
at noise level 7 (lowest SNR), with all the tested windows,
even if the mainlobe of the filter spectrum overlaps with t
metabolite peak.
• The amplitude quantification after Marionet al.removal is

unbiased only if the metabolites are in the stopband regio
the filter (window length≥31 points). The proposed correctio

is not efficient.
LVENT PEAK SUPPRESSION 35
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• Generally speaking the amplitudes are slightly ov
estimated after Sodano and Delepierre removal, except with
31 points window. Results obtained with a 21 points window
out of the axis limits. The proposed corrections are neces
especially when the window is short, but the estimated amplit
is still slightly biased. A short examination on peak 2, confirm
this conclusion and it is supported by the fact that the water p
is not totally suppressed.
• In many cases the quantification algorithm does not c

verge after the Cross removal method. When it converges
result is biased.
• If the signal is filtered with the maximum phase filter an

then quantified with AMARES, a bias exists. To avoid bias, o
can correct those estimatesa posteriorias in Eqs. [36] to [39]
or, as explained in Section 2.6 one can use AMARESf , which
includes the effect of the filter in the quantitation algorith
Both methods are as efficient at high SNR, but the latter se
slightly better at low SNR.
• At noise level 7, all methods are slightly biased.

3.2.2. Root mean square error.The Cramér–Rao bound
(CRB) is equal to the lowest variance/standard deviation

FIG. 9. Estimated relative amplitude bias with the method of Marionet al.
(Top) No correction applied; (Bottom) correction applied. Each mark co
sponds to a specific window length: (+) 21 points, (s) 25 points, (∗) 31 points,
(×) 35 points, (h) 41 points, (e) 45 points, (n) 51 points.M is equal to the

length of the window minus 1.
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FIG. 10. Estimated relative amplitude bias with the method of Sodano
Delepierre. (Top) No correction applied; (Bottom) correction applied. Each m
corresponds to a specific window length: (+) 21 points, (s) 25 points, (∗)
31 points, (×) 35 points, (h) 41 points, (e) 45 points, (n) 51 points.

one can expect from an unbiased estimator. This bound incre
with the noise level (18). However, we are not interested in
fluctuations, but in the relation between the Root Mean Sq
Error (RMSE) of the estimator and the lowest standard devia
over all sets of unbiased estimators. So we will plot the quan
RMSE/CRBσ .

The previous quantity is only meaningful for an unbias
estimator. So, the following will concern:

• the corrected parameter estimates after Gabor solven
moval,
• the noncorrected parameter estimates after Marionet al.,

solvent removal,
• the corrected parameter estimates after Sodano

Delepierre solvent removal
• the parameters estimated with AMARESf , or thea posteri-

ori corrected parameter estimates after maximum phase filte

As the Cross method leads to highly biased results, we exc
it from this analysis.

In Figs. 13 to 16 we focus on the amplitude. According

these results one observes that:
ET AL.
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FIG. 11. Estimated relative amplitude bias with the method of Cross:
correction applied. Each mark corresponds to a specific cutoff frequency o
6th order highpass filter measured at−3 dB: (+) 15 Hz, (s)20 Hz, (∗) 25 Hz,
(×) 30 Hz, (h) 35 Hz, (e) 40 Hz, (n) 45 Hz.

• The performance of the Gabor method is close to the t
oretical lower bound provided one chooses the window len
correctly. Short windows are preferred because long windo
although they properly separate the water peak and the m
bolites, require the removal of a large number of points at
beginning of the treated signal, resulting in a degradation of
quality of the parameter estimates due to an increase in stan
deviation.
• The performance of the method of Marionet al. may be

good at low or high SNR as long as the window is longer th
35 points. A correct window length choice is crucial to avo
inaccurate estimates.
• At high SNR, the RMSE with the solution of Sodano an

Delepierre is far from the CRB and one cannot recommend

FIG. 12. Estimated relative amplitude bias when using a maximum ph
filter to suppress the solvent peak. The filter is chosen according to Sundinet al.
(9): (∗) the FID is filtered and then quantified with AMARES; (s) the FID is

filtered, quantified with AMARES, and the estimates are correcteda posteriori
(see Eq. [36]); (+) AMARES f .
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FIG. 13. Ratio of the RMSE to the Cram´er–Rao bound of the amplitude
with Gabor method. The estimated parameters were corrected. Each mark c
sponds to a specific window length: (+) 21 points, (s) 25 points, (∗) 31 points,
(×) 35 points, (h) 41 points, (e) 45 points, (n) 51 points.

method. At noise level 5, it seems better. Is a short wind
preferable to a long window? This is not obvious, since two
fects compete against each other. A short filter implies a sh
translation of the extracted solvent component and also a
ter with a large transition band. So, those filters are not v
selective. To reduce the transition band, longer filters can
chosen, but the length of the translations involved in the met
of Sodano and Delepierre increases.
• Filtering with a maximum phase filter and then quantifyin

the signal leads to very satisfactory results. A slight advantag
gained from taking into account the filter correction in the qua
tification step as proposed by Sundinet al.(and nota posteriori).

3.2.3. Discussion. As suspected, the Cross method did n
lead to reliable quantification. When preparing this publicatio

FIG. 14. Ratio of the RMSE to the Cram´er–Rao bound of the amplitude
with the method of Marionet al.and without parameter correction. Each ma
corresponds to a specific window length: (+) 21 points, (s) 25 points, (∗)
31 points, (×) 35 points, (h) 41 points, (e) 45 points, (n) 51 points.M is equal

to the length of the window minus 1.
LVENT PEAK SUPPRESSION 37
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FIG. 15. Ratio of the RMSE to the Cram´er–Rao bound of the amplitude
with the method of Sadano and Delepierre and with parameter correction. E
mark corresponds to a specific window length: (+) 21 points, (s) 25 points, (∗)
31 points, (×) 35 points, (h) 41 points, (e) 45 points, (n) 51 points.

we have investigated various variations, like executing the wh
filtering step in the reverse direction: The initialization step
driven backward, then we filter forward and then backwa
From a theoretical perspective, this is equivalent to filter a m
regular signal. However, quantification results were not as g
as those obtained with the method of Sundinet al.

In our experiment, the scheme of Sodano and Delepierre d
not remove totally the water signal. The estimated damping (
plotted) is biased. The estimated amplitude is also biased, e
cially with a short window. In that case, correcting this parame
is essential. But, in our example, a bias remains even with c
rected parameters. It seems difficult to choose a window len
for which quantification will surely perform well, especially a
high SNR.

The Gabor method leads to biased estimates of the ampli
and unbiased estimates of the damping (not plotted). Correc

FIG. 16. Ratio of the RMSE to the Cram´er–Rao bound of the amplitude
when using a maximum phase filter to suppress the solvent peak. The filt
chosen according to (9): (s) the FID is filtered, quantified with AMARES, and

the estimates are correcteda posteriori(see Eq. [36]); (+) AMARES f .
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the amplitude parameter is essential and leads to an unb
estimator. This method is not very sensitive to the choice
window. However the variance of the estimated paramete
rather large at low or high SNR.

The method of Marionet al. sometimes outperforms all th
other methods, but it may also be very unsatisfactory at h
SNR. For example, we have noticed that the ratio RMSE/CRσ

of the amplitude of peak 3 is equal to 1.75 with the same
45 points Hamming window which quantifies very well pe
1. A correct choice ofM is also critical and difficult. At low
SNR this method may be recommended and is less sensiti
the chosen parameters than at high SNR.

Filtering with a maximum phase filter and quantifying t
remaining signal leads to overall excellent results when
ing into account the filter effects. The estimated parameters
unbiased and RMSE/CRBσ is always lower than 1.25. Sundin
et al. proposed to take into account the filter correction dur
quantification. The slight advantage overa posterioricorrection
is confirmed when analysing the other peaks. Furthermor
prior knowledge is available, the method of Sundinet al. can
take it into account.

4. CONCLUSION

Many spectral line removal techniques are based on the fi
ing concept. From a signal processing perspective, they ma
differ on the treatment of the first FID points.

Furthermore this study emphasizes two key points:

• FID quantification must take into account the spectral l
removal processing if one intends to estimate the metabo
concentration without bias and with high accuracy. This con
sion is very general and future quantification techniques m
include corrections based on all the acquisition steps. They
not be independent from the acquisition technique.
• Among the five post-processing methods tested, the m

efficient method in terms of quantification after spectral l
removal is the one proposed by Sundinet al. (9). It has several
advantages:

—it is the only one that is fully automatic —even if mo
of the other methods could be automated.

—it is unbiased and its performances are very close to
best possible method at high or low SNR for the damping and
amplitude. The maximum phase filter better takes into acco
the information contained in the first point of the FID and y
does not need additional assumptions on the solvent signa

—prior knowledge may be taken into account during qu
titation.

So Sundin’s method should be considered as the refer
method for spectral line removal based on FID filtering.

With spin-echo sequences there is no border effect and
problem is slighty different. A filter based method should remo

very well the solvent line. As in the FID case, the quantificati
ET AL.
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step should include some correction terms which depends o
chosen filter.

APPENDIX A

Some Basic Properties of the Fourier Transform

We consider signals of finite energy,f ∈ L2(R). The Fourier
transform of f is denoted byf̂ , namely,

f̂ (ω) =
∫
R

f (t)e−iωt dt [40]

The signal f can be recovered from its Fourier transform̂f by
the inversion formula:

f (t) = 1

2π

∫
R

f̂ (ω)eiωt dω. [41]

With p ∈ N andg(t) = (−it)p f (t) in L2(R), the pth deriva-
tive of f̂ is equal to the Fourier transform ofg:

f̂ (p)(ω) = ĝ(ω). [42]

One can prove that if∫
R
| f̂ (ω)|(1+ |ω|p) dω < +∞, [43]

the function f is bounded andp times continuously differen-
tiable with bounded derivatives. The decay of| f̂ | at high fre-
quencies depends on the worst singular behaviour off . So, if f
is discontinuous at one point (and continuous everywhere e
| f̂ (ω)| decreases slowly, typically like1

|ω| . So the spectrum is
largely affected by this local discontinuity or this local wor
behavior.

Another well-known property is the convolution theorem
Suppose thatf andg are inL2(R), then the convolution produc
h(t),

h(t) = f ∗ g(t) =
∫
R

f (t − τ )g(τ ) dτ [44]

is continuous.In terms of Fourier transform one has

ĥ(ω) = f̂ (ω)ĝ(ω). [45]

APPENDIX B

Approximate Expression of the Gabor Transform
of a Water or Metabolite Peak

We seek an approximate expression ofG f̄ ,S(t, ω). S is sup-
posed to be a water or metabolite peak whose definition is g
onat the beginning of Section 2.1.
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Most of the following results and approximations come fro
the time-frequency/scale analysis (2, 4, 19).

We say that a functionA is regular on an intervalI = [a, b],
if for somen ∈ N\{0}, A(n−1)(τ ), then− 1 derivative ofA, is
continuous on [a, b] and A(n)(τ ) exists for everyτ ∈ (a, b).

Under the assumption thatU (τ )A(τ ) is regular enough on
It = [−T2 + t,−T1 + t ] (so t /∈ [T1, T2)), Taylor’s theorem
implies that, for everyα and β in It , there exists a pointx
betweenα andβ such that

U (β)A(β) =
n−1∑
k=0

A(k)(α)

k!
(β − α)k + A(n)(x)

n!
(β − α)n [46]

=
n−1∑
k=0

A(k)(α)

k!
(β − α)k + rn,α(β)(β − α)n. [47]

If |A(n)(τ )| is bounded,rn,α(β) will also be bounded

|rn,α(β)| ≤ 1

n!
sup

τ∈(−T2+t,−T1+t)
|A(n)(τ )|.

Let l be the point wheref is maximum or the average location
In the latter case,

l =
∫
R t | f (t)|2 dt∫
R | f (t)|2 dt

.

We rewrite Eq. [1] expandingA(t) aroundt − l , with the addi-
tional hypothesis:t ≥ T2, which means that we are seeking fo
an approximation outside of the transients. Then,

G f̄ ,S(t, ω) =
∫ T2−l

T1−l
f (v + l )eiω(v+l )S((t − l )− v) dv

= ei (ω0(t−l )+φ+ωl )
∫ T2−l

T1−l
f (v + l )A((t − l )− v)

× ei (ω−ω0)v dv

= ei (ω0(t−l )+φ+ωl )

×
[

n−1∑
j=0

A( j )(t − l )

j !

∫ T2−l

T1−l
f (v + l )(−v) j

× e−i (ω0−ω)v dv +
∫ T2−l

T1−l
f (v + l )(−v)n

× rn,t−l ((t − l )− v)e−i (ω0−ω)v dv

]
. [48]

With Eq. [42], the firstn terms in square brackets of Eq. [48
may be rewritten as

Bj (t, ω) = 1

j !
A( j )(t − l )(−i ) j f̂−l ,0

( j )
(ω0− ω),
j = 0, . . . ,n− 1.
LVENT PEAK SUPPRESSION 39
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The last term may be bounded,

|Cn(t, ω)| =
∣∣∣∣ ∫ T2−l

T1−l
f (v + l )(−v)nrn,t−l ((t − l )− v)

× e−i (ω0−ω)v dv

∣∣∣∣
≤ supτ∈(−T2+t,−T1+t) |A(n)(τ )|

n!

×
∫ T2−l

T1−l
| f (v + l )||v|n dv,

for instance if the impulse response of the filterf is finite.
This bound essentially depends on the supremum of|A(n)(τ )|
on (−T2+ t,−T1+ t).

In particular, withn = 1,

G f̄ ,S(t, ω) = ei (ω0(t−l )+φ+ωl )(A(t − l ) f̂−l ,0(ω0− ω)+ C1(t, ω))

[49]

= S(t − l )eiω0l f̂ (ω0− ω)+ ei (ω0(t−l )+φ+ωl )C1(t, ω)

[50]

Then, under the assumption thatA(τ ) varies slowly on [−T2 +
t,−T1+ t ], which means thatA(1)(τ ) is very small on this inter-
val, G f̄ ,S(t, ω0) and the filtering method lead to good approx
mations ofSup to a correction term.

ACKNOWLEDGMENTS

The authors thank K. J. Cross for answering their numerous questions.
of the article was written when A. Coron was a postdoc at the Univere
Catholique de Louvain in Louvain-la-Neuve (Belgium). L. Vanhamme is a po
doc funded by the Katholieke Universiteit Leuven. This work is supported
the EC Training and Mobility of Researchers contract ERBFMRXCT9701
entitled “Advanced signal processing for medical magnetic resonance im
ing and spectroscopy,” by the Belgian Programme on Interuniversity Pole
Attraction (IUAP-4/2 & 24), initiated by the Belgian State, Prime Minister
Office—Federal Office for Scientific, Technical and Cultural Affairs, by the Co
certed Research Action (GOA) projects of the Flemish Government MEFIS
666 (Mathematical Engineering for Information and Communication Syste
Technology) and by the Fund for Scientific Research-Flanders (FWO) G
G.0360.98.

REFERENCES

1. W. S. Price, Water signal suppression in NMR spectroscopy,Annu. Rep.
NMR Spectrosc.38,289–354 (1999).

2. J.-P. Antoine, A. Coron, and J.-M. Dereppe, Water peak suppression: T
frequency vs time-scale approach,J. Magn. Reson.144(2), 189–194 (2000).

3. D. Barache, J.-P. Antoine, and J.-M. Dereppe, The continuous wavelet t
form, an analysis tool for NMR spectroscopy,J. Magn. Reson.128(1), 1–11
(1997).

4. N. Delprat, B. Escudi´e, P. Guillemain, R. Kronland-Martinet
P. Tchamitchian, and B. Torr´esani, Asymptotic wavelet and Gabo
analysis: Extraction of instantaneous frequencies,IEEE Trans. Inform.

Theory38(2), 644–664 (1992).



o

o

e

n

i

for
etic

ccu-
n

hod
ior

,

nal
Hall

rete

ron-
of

ter-
40 CORON

5. P. Guillemain, R. Kronland-Martinet, and B. Martens, Estimation
spectral lines with the help of the wavelet transform—Application
N.M.R. spectroscopy.in “Wavelets and Applications—Proceedings of th
International Conference Marseille, France, May 1989” (Y. Meyer, Ed
pp. 38–60.́Editions Masson, Paris and Springer-Verlag, Berlin, 1991.

6. D. Marion, M. Ikura, and A. Bax, Improved solvent suppression in on
and two-dimensional NMR spectra by convolution of time-domain da
J. Magn. Reson.84(2), 425–430 (1989).

7. P. Sodano and M. Delepierre, Clean and efficient suppression of the w
signal in multidimension NMR spectra,J. Magn. Reson. Ser. A104,88–92
(1993).

8. K. J. Cross, Improved digital filtering technique for solvent suppressi
J. Magn. Reson. Ser. A101(2), 220–224 (1993).

9. T. Sundin, L. Vanhamme, P. Van Hecke, I. Dologlou, and S. Van Huff
Accurate quantification of1H spectra: From finite impulse response filte
design for solvent suppression to parameter estimation,J. Magn. Reson.
139(2), 189–204 (1999).

10. H. G. Feichtinger and T. Strohmer (Eds.), “Gabor Analysis a
Algorithms—Theory and Applications.” Birkh¨auser, Boston, 1998.

11. R. Kumaresan and D. W. Tufts, Estimating the parameters of exponent
damped sinusoids and pole-zero modeling in noise,IEEE Trans. Acoust.

Speech Signal Process.30(6), 833–840 (1982).
ET AL.

f
in
e
.),

e-
ta,

ater

n,

l,
r

d

ally

12. H. Barkhuijsen, R. de Beer, and D. van Ormondt, Improved algorithm
noniterative time-domain model fitting to exponentially damped magn
resonance signals,J. Magn. Reson.73,553–557 (1987).

13. J. W. C. van der Veen, R. de Beer, P. R. Luyten, and D. van Ormondt, A
rate quantification ofin vivo31P NMR signals using the variable projectio
method and prior knowledge,Magn. Reson. Med.6, 92–98 (1988).

14. L. Vanhamme, A. van den Boogaart, and S. Van Huffel, Improved met
for accurate and efficient quantification of MRS data with use of pr
knowledge,J. Magn. Reson.129,35–43 (1997).

15. T. W. Parks and C. S. Burrus, “Digital Filter Design.” Wiley, New York
1987.

16. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Discrete-Time Sig
Processing,” Prentice Hall Signal Processing Series, 2nd ed. Prentice
International, Englewood Cliffs, NJ, 1999.

17. F. J. Harris, On the use of windows for harmonic analysis with the disc
Fourier transform,Proc. IEEE66(1), 51–83 (1978).

18. S. Cavassila, S. Deval, C. Huegen, D. van Ormondt, and D. Grave
Demilly, Cramér–Rao bound expressions for parametric estimation
overlapping peaks: Influence of prior knowledge,J. Magn. Reson.143,
311–320 (2000).

19. B. Torrésani, “Analyse continue par ondelettes,” Savoirs actuels. In
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